12 research outputs found

    Analysing Edge Computing Devices for the Deployment of Embedded AI

    Get PDF
    In recent years, more and more devices are connected to the network, generating an overwhelming amount of data. This term that is booming today is known as the Internet of Things. In order to deal with these data close to the source, the term Edge Computing arises. The main objective is to address the limitations of cloud processing and satisfy the growing demand for applications and services that require low latency, greater efficiency and real-time response capabilities. Furthermore, it is essential to underscore the intrinsic connection between artificial intelligence and edge computing within the context of our study. This integral relationship not only addresses the challenges posed by data proliferation but also propels a transformative wave of innovation, shaping a new era of data processing capabilities at the network’s edge. Edge devices can perform real-time data analysis and make autonomous decisions without relying on constant connectivity to the cloud. This article aims at analysing and comparing Edge Computing devices when artificial intelligence algorithms are deployed on them. To this end, a detailed experiment involving various edge devices, models and metrics is conducted. In addition, we will observe how artificial intelligence accelerators such as Tensor Processing Unit behave. This analysis seeks to respond to the choice of a device that best suits the necessary AI requirements. As a summary, in general terms, the Jetson Nano provides the best performance when only CPU is used. Nevertheless the utilisation of a TPU drastically enhances the results.This work was partially financed by the Basque Government through their Elkartek program (SONETO project, ref. KK-2023/00038)

    Pangea: An MLOps Tool for Automatically Generating Infrastructure and Deploying Analytic Pipelines in Edge, Fog and Cloud Layers

    Get PDF
    Development and operations (DevOps), artificial intelligence (AI), big data and edge–fog–cloud are disruptive technologies that may produce a radical transformation of the industry. Nevertheless, there are still major challenges to efficiently applying them in order to optimise productivity. Some of them are addressed in this article, concretely, with respect to the adequate management of information technology (IT) infrastructures for automated analysis processes in critical fields such as the mining industry. In this area, this paper presents a tool called Pangea aimed at automatically generating suitable execution environments for deploying analytic pipelines. These pipelines are decomposed into various steps to execute each one in the most suitable environment (edge, fog, cloud or on-premise) minimising latency and optimising the use of both hardware and software resources. Pangea is focused in three distinct objectives: (1) generating the required infrastructure if it does not previously exist; (2) provisioning it with the necessary requirements to run the pipelines (i.e., configuring each host operative system and software, install dependencies and download the code to execute); and (3) deploying the pipelines. In order to facilitate the use of the architecture, a representational state transfer application programming interface (REST API) is defined to interact with it. Therefore, in turn, a web client is proposed. Finally, it is worth noting that in addition to the production mode, a local development environment can be generated for testing and benchmarking purposes.This research has been funded in the context of the IlluMINEation project, from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 869379

    On demand translation for querying incompletely aligned datasets

    Get PDF
    More and more users aim at taking advantage of the existing Linked Open Data environment to formulate a query over a dataset and to then try to process the same query over different datasets, one after another, in order to obtain a broader set of answers. However, the heterogeneity of vocabularies used in the datasets on the one side, and the fact that the number of alignments among those datasets is scarce on the other, makes that querying task difficult for them. Considering this scenario we present in this paper a proposal that allows on demand translations of queries formulated over an original dataset, into queries expressed using the vocabulary of a targeted dataset. Our approach relieves users from knowing the vocabulary used in the targeted datasets and even more it considers situations where alignments do not exist or they are not suitable for the formulated query. Therefore, in order to favour the possibility of getting answers, sometimes there is no guarantee of obtaining a semantically equivalent translation. The core component of our proposal is a query rewriting model that considers a set of transformation rules devised from a pragmatic point of view. The feasibility of our scheme has been validated with queries defined in well known benchmarks and SPARQL endpoint logs, as the obtained results confirm

    Datos abiertos enlazados (LOD) y su implantación en bibliotecas: iniciativas y tecnologías

    Get PDF
    The web of data is becoming one of the largest global information repositories, thanks to initiatives like LOD (linked open data) that facilitate the standardized publication of open data. The use of this paradigm offers great opportunities for libraries, applying semantic technologies to expedite data management and publication and promoting their connection to other repositories, increasing their presence and impact. In order to ensure the future of libraries in the Web of data, it is necessary to raise awareness among librarians about LOD opportunities and challenges. With this aim, we present the major initiatives in this area, along with the pioneering organizations in the use of linked data in the library domai

    Datos abiertos enlazados (LOD) y su implantación en bibliotecas: iniciativas y tecnologías

    Get PDF
    The web of data is becoming one of the largest global information repositories, thanks to initiatives like LOD (linked open data) that facilitate the standardized publication of open data. The use of this paradigm offers great opportunities for libraries, applying semantic technologies to expedite data management and publication and promoting their connection to other repositories, increasing their presence and impact. In order to ensure the future of libraries in the Web of data, it is necessary to raise awareness among librarians about LOD opportunities and challenges. With this aim, we present the major initiatives in this area, along with the pioneering organizations in the use of linked data in the library domai

    PADL: A Modeling and Deployment Language for Advanced Analytical Services

    Get PDF
    In the smart city context, Big Data analytics plays an important role in processing the data collected through IoT devices. The analysis of the information gathered by sensors favors the generation of specific services and systems that not only improve the quality of life of the citizens, but also optimize the city resources. However, the difficulties of implementing this entire process in real scenarios are manifold, including the huge amount and heterogeneity of the devices, their geographical distribution, and the complexity of the necessary IT infrastructures. For this reason, the main contribution of this paper is the PADL description language, which has been specifically tailored to assist in the definition and operationalization phases of the machine learning life cycle. It provides annotations that serve as an abstraction layer from the underlying infrastructure and technologies, hence facilitating the work of data scientists and engineers. Due to its proficiency in the operationalization of distributed pipelines over edge, fog, and cloud layers, it is particularly useful in the complex and heterogeneous environments of smart cities. For this purpose, PADL contains functionalities for the specification of monitoring, notifications, and actuation capabilities. In addition, we provide tools that facilitate its adoption in production environments. Finally, we showcase the usefulness of the language by showing the definition of PADL-compliant analytical pipelines over two uses cases in a smart city context (flood control and waste management), demonstrating that its adoption is simple and beneficial for the definition of information and process flows in such environments.This work was partially supported by the SPRI–Basque Government through their ELKARTEK program (3KIA project, ref. KK-2020/00049). Aitor Almeida’s participation was supported by the FuturAAL-Ego project (RTI2018-101045-A-C22) granted by the Spanish Ministry of Science, Innovation and Universities. Javier Del Ser also acknowledges funding support from the Consolidated Research Group MATHMODE (IT1294-19), granted by the Department of Education of the Basque Government

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Semantic Information Fusion of Linked Open Data and Social Big Data for the Creation of an Extended Corporate CRM Database

    No full text
    The amount of on-line available open information from heterogeneous sources and domains is growing at an extremely fast pace, and constitutes an important knowledge base for the consideration of industries and companies. In this context, two relevant data providers can be highlighted: the “Linked Open Data” and “Social Media” paradigms. The fusion of these data sources – structured the former, and raw data the latter –, along with the information contained in structured corporate databases within the organizations themselves, may unveil significant business opportunities and competitive advantage to those who are able to understand and leverage their value. In this paper, we present a use case that represents the creation of an existing and potential customer knowledge base, exploiting social and linked open data based on which any given organization might infer valuable information as a support for decision making. In order to achieve this a solution based on the synergy of big data and semantic technologies will be designed and developed. The first will be used to implement the tasks of collection and initial data fusion based on natural language processing techniques, whereas the latter will perform semantic aggregation, persistence, reasoning and retrieval of information, as well as the triggering of alerts over the semantized information

    PADL: A Modeling and Deployment Language for Advanced Analytical Services

    No full text
    In the smart city context, Big Data analytics plays an important role in processing the data collected through IoT devices. The analysis of the information gathered by sensors favors the generation of specific services and systems that not only improve the quality of life of the citizens, but also optimize the city resources. However, the difficulties of implementing this entire process in real scenarios are manifold, including the huge amount and heterogeneity of the devices, their geographical distribution, and the complexity of the necessary IT infrastructures. For this reason, the main contribution of this paper is the PADL description language, which has been specifically tailored to assist in the definition and operationalization phases of the machine learning life cycle. It provides annotations that serve as an abstraction layer from the underlying infrastructure and technologies, hence facilitating the work of data scientists and engineers. Due to its proficiency in the operationalization of distributed pipelines over edge, fog, and cloud layers, it is particularly useful in the complex and heterogeneous environments of smart cities. For this purpose, PADL contains functionalities for the specification of monitoring, notifications, and actuation capabilities. In addition, we provide tools that facilitate its adoption in production environments. Finally, we showcase the usefulness of the language by showing the definition of PADL-compliant analytical pipelines over two uses cases in a smart city context (flood control and waste management), demonstrating that its adoption is simple and beneficial for the definition of information and process flows in such environments
    corecore